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Abstract
The van der Waals coefficients and the separation dependent retardation functions of the
interactions between the atomically thin films of the multi-layered transition metal molybdenum
disulfide (MoS2) dichalcogenides with the alkali atoms are investigated. First, we determine the
frequency-dependent dielectric permittivity and intrinsic carrier density values for different
layers of MoS2 by adopting various fitting models to the recently measured optical data reported
by Yu and co-workers (2015 Sci. Rep. 5, 16 996) using spectroscopy ellipsometry. Then,
dynamic electric dipole polarizabilities of the alkali atoms are evaluated very accurately by
employing the relativistic coupled-cluster theory. We also demonstrate the explicit change in the
above coefficients for different number of layers. These studies are highly useful for the
optoelectronics, sensing and storage applications using layered MoS2.

Supplementary material for this article is available online

Keywords: van der Waals interaction, molybdenum disulfide dichalcogenide, dipole
polarizability

(Some figures may appear in colour only in the online journal)

1. Introduction

Recent advances in the fabrication and synthesis of ultra-thin
layered materials with unit cell thickness has boosted the art
of continuously tailoring the properties of materials. Among
these, graphene, a two dimensional (2D) material of carbon
atoms, exhibit unique electronic, physical and chemical
properties. However, zero band gap of graphene restricts the
direct application of graphene in the electronic devices. This
has prompted to search for composite graphene-like materials
with a finite band gap. Transition metal dichalcogenides
(TMDs) possessing the identical lamellar structure of graphite
manifest remarkable applications in nano-electronics, sensors,
catalytic, energy conversion and storage devices. The nature
of transition elements present in these materials affects their
structures. TMDs containing transition elements from the IV-
VII groups of the periodic table exhibit layered structures,

while those containing transition elements belonging to the
VIII-X groups show non-layered structures [1].

In addition to the homo-layer configurations in the 2D
TMDs, the nanoscale heterostructures of TMDs have also
been found to be suitable for the implementation of novel
photonic and electronic devices [2, 3]. Theoretical studies
demonstrate that several 2D TMDs offer a plethora of
opportunities using lateral and vertical heterostructures due to
their tunable broad-range optical bandgap and strong light–
matter interactions [4, 5]. These heterostructures can be
classified into three types on the basis of their band align-
ments; i.e. symmetric (type I), staggered (type II) and broken
(type III) [6]. All these materials find many applications in
high performance devices such as light-emitting diodes,
photodetectors and transistors [7–14]. Moreover, strong
Coulomb interactions and anisotropic dielectric environment
lead to the formation of strongly bound excitons, trions, and
biexcitons in these materials [15–17]. The hetero-bilayers of
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TMDs with inter-layer excitons are emerging as novel class of
long-lived dipolar composite bosons for optoelectronic
applications [18]. Recently, it has been found that magnetic
fields can promote the formation of biexciton to create
favorable conditions for the formation of multiple exciton
complexes, exciton super-fluidity, and biexciton condensates
to materialize their practical applications [19].

Among TMDs, molybdenum disulfide (MoS2) has
emerged as one of the promising next-generation 2D mate-
rials with exceptional photonic, non-linear and electronic
properties, in contrast to its bulk counterpart [20–22] and
attracted applications among flexible gas sensing [23, 24] and
optoelectronic devices [25–35]. In order to design and
simulate the next-generation nanoelectronic devices built with
MoS2, it is important to gain accurate knowledge of its
electrical permittivity (ò), which is a fundamental property
that characterizes refractive index, absorption, conductivity,
capacitance, and many other intrinsic phenomena of a mat-
erial [36]. Owing to complexity involved in the determination
of ò values, a number of studies on these quantities for dif-
ferent layers of MoS2 have been carried out. These investi-
gations report a wide range of values with substantial
differences in magnitudes from each other. This can be evi-
dent from the following: Liang et al [37] and Beal et al [38]
presented a reflectivity spectrum of MoS2 and calculated ò
values by adopting Kramers-Kronig procedures. Liu et al [39]
demonstrated that ò can be deduced from the absorption
spectra. They first extracted out the imaginary part of ò from
the absorption spectra, then estimated the real part using the
Kramers-Kronig relation. Li et al [40] inferred ò from diff-
erential reflection spectra using an effective reflection coef-
ficient method. Castellanos-Gomez et al [41] studied the
refractive index of thin MoS2 crystal with the Fresnel law and
further predicted ò values. Recently, Yu et al [42] have
measured ò values as functions of the number of layers for a
discrete wavelength spectra in the visible region (345nm to
1000 nm) using spectroscopic ellipsometry technique. Their
employed method is specially designed to measure optical
data very accurately, so it is expected that measured values of
ò by Yu et al are more reliable than the above-estimated
values using various methods.

Apart from the electronic properties, knowledge of single
atom adsorption with the atomically thin layered surfaces is of
great importance for many practical applications. For
instance, the alkali metal atom adsorption on graphene gen-
erally leads to an increase in its Fermi level, that has excellent
potential for the field emission applications [43]. Moreover,
Li ion storage capacity of single boron-doped graphene is
found to be dramatically improved [44]. It is also known that
if alkali atoms are absorbed on a metal surface, the electron
and ion emission properties of the surface are drastically
altered to provide improved applications in thermionics and
physical electronics. The intercalations of alkali-metal ions
(such as Li+, Na+, K+) in 2D-layered MoS2 can induce
structural phase changes along with introducing changes in
their electronic and optical properties [45–48]. The 2D MoS2
nanoflakes on intercalation with Li+ ions exhibit plasmon
resonances near-UV and visible regions. These materials have

potential applications in the optoelectronics as well as in the
plasmonic biosensing [49, 50]. Additional efforts have also
been made to manipulate the electronic properties of MoS2
through single-atom adsorption [51–53]. The van der Waals
(vdW) interactions between atoms and material surfaces are
critical for the study of physical adsorption. The interactions
of atoms having lower ionization potentials with MoS2 layers
are considered to be crucial for a large number of possible
applications requiring low-energy plasmas and ion beams
[54]. From this point of view, it is important to fathom vdW
interactions among alkali atoms with the material media;
especially with the MoS2 layers.

Motivated by the above developments, we report the
vdW interactions between different alkali atoms and MoS2
based TMDs. The electrical permittivity data required for
such calculations have been taken from the ellipsometry
measurements of Yu et al [42]. Calculations of dynamic
dipole polarizabilities at imaginary frequencies for the
respective atoms required for this study are carried out using
relativistic coupled-cluster (RCC) theory. We qualitatively
evaluate the intrinsic carrier density (N) for MoS2 layers by
fitting the experimental permittivity results with Drude-Lor-
entz (DL) oscillator. The DL model permits extraction of N
from MoS2 based TMDs for different number of layers. This
allows us to examine the effect of N on the interaction
coefficients as functions of the number of layers in MoS2. We
find that the interactions between neutral atoms and MoS2 are
directly proportional to N, and they are maximum for
monolayer. They decrease up to the 6th layer, thereafter they
start increasing in the MoS2 based TMDs.

The paper is organized as follows. In section 2, we pre-
sent theoretical formulae used to calculate the vdW coeffi-
cients and the retardation functions, which can be used to
describe the nature of the vdW interactions over a wide range
of radial distance. In section 3, we discuss methods used for
accurate evaluation of the atomic dynamic dipole polariz-
abilities. A well suited permittivity model to extract out the
values of N is discussed in section 4. It follows by presenting
results and discussion in section 5, before concluding in the
last section.

2. Theory

A consistent theory, accounting for the electrical, mechanical
and optical properties of materials, to study the vdW inter-
actions among various atomic systems and real bodies made
of different materials has been given by E. M. Lifshitz and
collaborators [55, 56]. The atom-wall interactions can be
computed by considering a polarizable particle interacting
with a surface or a wall as a continuous medium having a
frequency-dependent permittivity with real (òr(ω)) and ima-
ginary (òi(ω)) parts. In this theory, the interaction potential of
vdW interactions between an atom and a layered structure or a
material plate can be efficiently described by the following
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formula [55–58]
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òr(ω) is explained in [57–59]. In our study, the real (n(ω)) and
the imaginary (κ(ω)) parts of the refractive index of MoS2 are
used to evaluate the imaginary parts of the dielectric
permittivity of MoS2 by the relation
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We use the experimental values of n(ω) and κ(ω) from [42] to
obtain the imaginary part of dielectric permittivity values. For
conveniently carrying out the calculations and to predict the
number of intrinsic carrier density N (electrons per unit
volume) in the MoS2 layers, we determine òi(ω) using the DL
oscillator model. This procedure has been discussed latter in
detail.Further, we evaluate the real values of the dielectric
permittivity at the imaginary frequencies by using the Kra-
mers-Kronig formula [60]
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These values are calculated for the MoS2 layers with layer
number ranging from 1 to 10.

The vdW interaction potential can be conveniently
expressed by [61]
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For the perfect conductor J  1, whereas for other materials,
ϑ can be evaluated with the knowledge of their dielectric
permittivities. By adopting a similar approach as in [58], we
determine the vdW interaction potential between an atom and
a thin layer of MoS2 by using equation (1), and evaluate the
C3 coefficient using equation (6). By combining the C3

coefficient and the interaction potential, the functional form of
f z3 ( ) for the vdW interaction potential is inferred from
equation (5).

3. Dynamic polarizabilities of atoms

Evaluation of interaction potential U(z) from equation (1)
requires values of αn(ιω). The procedure for determining
accurate values of the dynamic polarizability of an atomic
system having a closed core and a valence electron has been
already described by us in [62, 63]. We apply the same
procedure here to calculate the dynamic polarizabilities of the
ground state of various alkali atoms considered in this study.
In this approach, we divide the total dipole dynamic polar-
izability in terms of scalar and tensor components as follows
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for the electric dipole (E1) reduced matrix elements
g gá ñJ JDn n k k∣∣ ∣∣ , J denotes the total angular momentum, E
stands for energy and γ represents for the additional quantum
numbers of atomic states.

For each component i=0 and 2, we divide contributions
to polarizability an

i( ) into three parts, based on the correlation
contributions from different types of electrons, as [62, 63]

a a a a= + + 13n
i

n c n cv
i

n v
i

,
0

, , ( )( ) ( ) ( ) ( )

where an c,
0( ) , an cv

i
,

( ) and an v
i
,

( ) are referred to as the core, core-
valence and valence correlation contributions, respectively.
The an c,

0( ) and an cv
i
,

( ) contributions arise from the core-orbitals
without considering and including interaction with valence
orbital, respectively. These contributions are small in the
alkali atoms. We, again, divide the an v

i
,

( ) contribution into two
parts; Main—containing dominant contributions from the
low-lying excited states, and Tail—containing contributions
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from the remaining excited states. As seen in the previous
studies, major contributions to the polarizabilities of the
atomic states in the alkali atoms come from an v

i
,

( ) [59, 63–68]
owing to the dominant contributions from the low-lying
excited states. Evaluating the Main contribution exclusively
has the advantage that uncertainty in its determination can be
reduced by using excitation energies and reduced E1 matrix
elements from the precise measurements wherever available.
Contributions from the Tail part are estimated approximately
using the Dirac-Fock (DF) method. Similarly, the core-
valence contribution an cv,

0( ) is also obtained using the DF
method, whereas we adopt a relativistic random phase
approximation, as discussed in [62, 69], to evaluate the an c,

0( )

contribution.

For accurate evaluation of the E1 matrix elements
involving the ground and low-lying excited states of the
considered atoms, we employ the RCC theory ansatz. In this
theory, the wave functions of atomic states in an alkali atom
can be expressed by [70–75]

Y ñ = + F ñe S1 ,n
T

n n∣ { }∣

where F ñ = F ñan n 0∣ ∣† with the DF wave function F ñ0∣ of the
closed-core of the atom and an

† denotes the valence orbital in
a given state, T is known as the hole-particle excitation
operator, which is responsible for exciting electrons from the
occupied orbitals, and Sn corresponds to the excitation
operator involving electron from the valence orbital n. In the
present work, we have considered singles and doubles exci-
tations in the RCC theory (RCCSD method) by expressing
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where t pa and tab
pq are the amplitudes of the singles and doubles

excitations of the T operator, respectively, and sn
p and snb

pq are
the amplitudes of the singles and doubles excitations of the Sn
operator, respectively. After obtaining atomic wave functions
in the RCCSD method, we calculate the E1 matrix element of
a transition between the states Y ñn∣ and Y ñk∣ using the
expression
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. Calculation procedures of

these expressions can be found elsewhere [70–75].

4. Models for permittivity determination

It is always desirable to have a logistic fit of the dielectric
permittivity of a material media. For this purpose, a number
of fitting models have been proposed in the literature [76, 77].
Drude developed a kinetic theory to account for the dielectric
permittivity as well as its variation with frequency. In the
Drude theory, the motion of a free electron in a material
media can be described as a harmonic motion, where the
electron oscillates under the influence of an electromagnetic
wave. The oscillation leads to charge redistribution and create
an additional induced electric field that restores electrons to
their equilibrium positions. This back and forth periodic
motion of electrons can be described mathematically by
oscillators. Within this harmonic oscillator model, the fre-
quency-dependent permittivity [78] can be presented as

w
w

w ig w
= -

+
 , 17D P

d

2

2
( ) ( )

where ωP is the plasma frequency relevant to the intraband
transitions and can be written in terms of intrinsic carrier
density N, reduced mass m* and permittivity of free space ò0

Table 1. Comparison of static polarizabilities (in a.u.) of the ground
states of the Li, Na, K, Rb and Cs alkali atoms with their
experimental values. Breakdown of different electron correlation
effects for the determination of polarizabilities are also given
explicitly.

Li Na K Rb Cs

Main 162.5 161.4 284.3 309.4 382.9
Core 0.2 0.9 5.5 9.1 15.8
Valence-core ∼0.0 ∼0.0 −0.1 −0.3 −0.5
Tail ∼0.0 0.08 0.06 0.11 0.15

Total 162.7 162.3 289.8 318.5 398.4
Experimental 164.2

[80]
162.7
[81]

289.7
[82]

319.8
[82]

400.8
[82]

Figure 1. Plots showing dynamic polarizabilities (in a.u.) of the
alkali Li, Na, K, Rb and Cs atoms in their ground state as function of
frequency (in a.u.).
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Table 2. Fitting parameters for the dynamic polarizabilities (αn(ιω)) of the considered alkali atoms. For unit conversion, one can use 1 a.u. of frequency ω=27.21 eV and 1 a.u. of
αn(ιω)=0.2488319kHz (kV cm−1 )−2.

Atom

Li Na K Rb Cs

Parameter Frequency (ω) in a.u.

0−1.85 1.86−3000 0−2.24 2.25−3000 0−1.4 1.5−3000 0−1.05 1.06−3000 0−0.99 1−3000

α0 0.442 77 0.0005 0.74571 0.00005 4.287 95 0.0022 7.26021 0.008 13 12.54507 0.013 91
ωc −0.00032 −0.91386 −0.00013 -1.82586 −0.00028 −0.64706 −0.00041 −0.70395 −0.00062 −0.6725
w 0.13766 1.759 99 0.1555 2.837 11 0.1201 1.50212 0.118 15 1.123 51 0.108 12 1.2767
A 35.392 79 11.556 82 39.472 51 28.468 48 53.872 49 60.89532 57.797 95 110.355 17 65.745 28 137.662 87
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. 18P
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Physically, the electromagnetic response of a material at ωP

changes from metallic to dielectric. γd in equation (17) is the
damping coefficient, which describes the damping force
arising due to subsequent collisions of electrons and is
expressed as

g
m

=
e

m
, 19d

*
( )

where μ is the carrier mobility and e is the electron charge. In
our calculations, its value is taken to be 0.041 m2V−1s−1 [79].
The Drude model describes contributions only from the free

electrons to the permittivity, but it does not take into account
the interband transitions of the bound electrons excited by the
photons with higher energy. The contributions from these
higher level interband electronic transitions to the dielectric
permittivity can be expressed as a superposition of the Lor-
entz oscillators, given by

åw
w

w w ig w
=

- -=


f

, 20L

j

j P

j j1

5 2

2 2
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where j stands for the resonant nodes, ωj corresponds to the
resonance frequencies, fj refers to the weighting factor and γj
is the damping coefficient. It is worth noting that the Lorentz
model reduces to the Drude Model for j=0, ω0=0, fj=1
and γ0=γd.

In real materials, both free and bound electrons con-
tribute to the dielectric permittivity. Therefore, the complete
model contains both Drude component for intra band effect
and Lorentz contribution for interband transitions. Account-
ing for them, the comprehensive DL model is represented as

w w w= + +¥    , 21DL D L( ) ( ) ( ) ( )

where ¥ is the permittivity at w  ¥, denoting the constant
offset value. We have used this model to fit the available
experimental values given in [42], then infer values at other
frequencies for their applications.

5. Results and discussion

For realizing interactions between the multi-layered molyb-
denum disulfide with the alkali atoms, we require accurate
values of dynamic polarizabilities of the alkali atoms. To
validate the rigid correctness of these values, we first deter-
mine the static polarizabilities for the ground state of the
considered alkali atoms and compare them with the available

Figure 2. A comparative analysis of the imaginary part of the
permittivity of the monolayer MoS2 film estimated using the Drude
model as given by equation (23) (blue curve) and the measured
spectra from [42] (red circles).

Figure 3. Plots of the imaginary parts of the dynamic permittivity
values of the monolayer MoS2 film estimated using the DL model
given by equation (24) (blue curve) and the measured spectra from
[42] (red circles) against wavelength (in nm). The òi values are
decomposed into six components. The first component is named as
‘D’ corresponding to the first term of equation (24), whereas the
other five components marked as ‘DL’ corresponding to j=1, 2, 3,
4 and 5 in the summation of equation (24).

Figure 4. Plots of the imaginary parts of the permittivity of the
monolayer MoS2 film estimated by the LDG model given by
equation (25) (blue curve) and from the measured spectra of [42]
(red circles) against wavelength (in nm). Here, the òi is decomposed
into seven components. The first component named as ‘D’
corresponding to j=0 term of equation (25), whereas the next five
components marked as ‘DL’ corresponding to i=1, 2, 3, 4 and 5.
The last term corresponds to the Gaussian background added.
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Table 3. Weight factor fj (dimensionless), damping coefficient γj (in eV), and ωj resonance frequencies (in eV) for the Lorentz oscillators used in equation (24) for layers 1, 2 and 3. All the
coefficients are normalized with ÿ.

j Layer 1 Layer 2 Layer 3

´f 10j
5[ ] g ´ - 10j

1[ ] w j ´f 10j
5[ ] g ´ - 10j

1[ ] w j ´f 10j
5[ ] g ´ - 10j

1[ ] w j

1 0.25±0.03 0.53±0.04 1.877±0.002 0.28±0.01 0.64±0.08 1.869±0.002 0.21±0.05 0.68±0.03 1.867±0.001
2 1.85±0.22 2.22±0.13 2.034±0.002 1.51±0.16 2.15±0.12 2.027±0.001 1.26±0.07 2.14±0.09 2.035±0.002
3 28.81±0.17 6.22±0.09 2.895±0.004 20.39±0.31 5.61±0.07 2.858±0.003 15.55±0.36 5.48±0.14 2.812±0.004
4 1.31±0.24 2.89±0.15 3.19±0.03 5.48±0.83 4.27±0.24 3.16±0.03 6.80±0.91 5.04±0.19 3.15±0.04
5 1.23±0.72 6.80±0.94 3.80±0.48 3.6±1.2 3.30±0.66 3.76±0.41 3.46±0.98 3.9±1.3 3.67±0.48
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Table 4. Weight factor fj (dimensionless), damping coefficient γj(in eV), and ωj resonance frequencies (in eV) for the Lorentz oscillators used in equation (24) for layers 4, 5 and 6. All the
coefficients are normalized with ÿ.

j Layer 4 Layer 5 Layer 6

fj/ÿ[×105] γj/ÿ[×10−1] ωj/ÿ fj/ÿ[×105] γj/ÿ[×10−1] ωj/ÿ fj/ÿ[×105] γj/ÿ[×10−1] ωj/ÿ

1 0.20±0.05 0.63±0.06 1.866±0.001 0.18±0.06 0.52±0.09 1.859±0.001 0.19±0.06 0.58±0.10 1.871±0.002
2 1.43±0.13 2.16±0.17 2.038±0.001 1.37±0.17 2.11±0.21 2.028±0.002 1.39±0.16 2.08±0.22 2.036±0.003
3 16.85±0.19 5.44±0.11 2.794±0.004 15.03±0.42 5.29±0.18 2.761±0.002 15.20±0.34 5.03±0.14 2.757±0.005
4 7.63±0.82 4.95±0.18 3.13±0.06 8.12±0.85 5.03±0.22 3.10±0.04 8.68±0.77 4.78±0.19 3.07±0.04
5 5.6±2.2 4.6±1.4 3.62±0.43 4.9±1.9 4.6±1.4 3.57±0.51 5.0±2.0 4.4±1.4 3.56±0.46
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Table 5. Weight factor fj (dimensionless), damping coefficient gj(in eV), and ωj resonance frequencies (in eV) for the Lorentz oscillators used in equation (24) for layers 7, 8 and 9. All the
coefficients are normalized with ÿ.

j Layer 7 Layer 8 Layer 9

fj/ÿ[×105] γj/ÿ[×10−1] ωj/ÿ fj/ÿ[×105] γj/ÿ[×10−1] ωj/ÿ fj/ÿ[×105] γj/ÿ[×10−1] ωj/ÿ

1 0.23±0.05 0.58±0.05 1.871±0.001 0.22±0.04 0.59±0.11 1.867±0.002 0.28±0.07 0.64±0.13 1.873±0.004
2 1.52±0.11 2.05±0.21 2.038±0.003 1.62±0.11 2.06±0.26 2.042±0.002 1.85±0.13 2.13±0.31 2.039±0.004
3 17.05±0.29 5.10±0.21 2.749±0.004 17.68±0.29 5.07±0.31 2.744±0.004 19.98±0.31 5.20±0.39 2.721±0.005
4 8.43±0.93 4.73±0.31 3.08±0.05 8.80±1.07 4.80±0.25 3.06±0.06 7.98±0.97 4.79±0.41 3.05±0.05
5 5.0±2.0 4.4±1.5 3.55±0.48 5.0±1.8 4.4±1.4 3.55±0.51 5.1±1.8 4.4±1.4 3.56±0.72
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measurements. Our final calculated polarizability values
along with the contributions from the core, core-valence and
valence correlations are tabulated in table 1. As can be seen,
our calculated value of the ground state of Li is 162.7 a.u.,
which is in good agreement with the polarizability value of
164.2 a.u. measured by Miffre et al [80] using atom inter-
ferometry. Similarly, our estimated value for Na atom is 162.3
a.u. against its experimental result 162.7 a.u. reported by
Holmgren et al [81]. The values obtained for K, Rb and Cs
atoms from our calculations are 289.8 a.u., 318.5 a.u. and
398.4 a.u., respectively. These values are also in good
agreement with available measurements [82]. This demon-
strates that the dynamic dipole polarizabilities of the inves-
tigated alkali atoms can be determined with sub-one percent
accuracy for the intended study.

We plot the dynamic polarizabilities obtained by us for
the alkali atoms in figure 1. To infer their values at a part-
icular frequency, we provide a fitting formula as

a iw a
p w w

= +
- +

A2 w

4 w
, 22

c
0 2 2

( )
( )

( )

where α0, A, w and ωc are the fitting parameters. These
parameters depend on the atom and range of frequency. We
provide these fitting parameters in table 2 for two different
ranges of frequency to extrapolate the results.

We use the previously discussed models to fit the
dynamic values of permittivity available in literature [42] and
recommend the best fitted permittivity model for MoS2 layers.
We consider only the imaginary part of the permittivity as the
real part can be estimated using the Kramer-Kronig relation,
given by equation (4). The formulae for the imaginary part of
ò following equations (17) and (20), are given by
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in the Drude and DL models, respectively. The w i
D ( ) values

of monolayer MoS2 using equation (23) have been graphi-
cally presented in figure 2. As can be verified from the figure
that the Drude model gives accurate permittivity values only

in the infrared region and the experimental data disagrees
with predictions from Drude model in the visible wavelength
(shorter than 700 nm). In this region various interband tran-
sitions start contributing. Therefore, it is expected that the DL
model will provide a better fit to the measured values. The

w i
DL ( ) values using equation (24) along with the exper-

imental permittivity values are shown in figure 3. It can be
noticed from this figure that the measured data from [42] is
consistent with the results estimated by the DL model. This
suggests that the values estimated using the DL model can be
assumed to be reliable for further analysis. The authors in [77]
have used a hybrid Lorentz-Drude-Gaussian (LDG) model in
their study to fit the permittivity data for monolayer of MoS2,
which is given by

åw
g w w

w w w g

h
w b
s

= +
- +

+ -
-

¥
=

 



f

exp
2

, 25

i
LDG

j

j j p

j j0

5 2

2 2 2 2 2

2

2

⎛
⎝⎜

⎞
⎠⎟

( )
( )

( ) ( )

with β as mean, σ as variance and η as the maximum ampl-
itude of the Gaussian function. In this case, the term with
j=0 and ω0=0 carries a weight factor ¹f 10 . As seen in
figure 4, by adding a Gaussian background of the above kind
with our DL model does not bring much change to our fitted
values. Since there is no physical interpretation of the
Gaussian component and it is added only as a background to
match the estimated values with the experimental results, this
justifies our above assertion that the DL model is able to
predict permittivity values accurately.

In tables 3, 4, 5, 6, and 7 we present the fitting values of
γd, ωP, γj, ωj and fj from the DL model for various layers of
MoS2 along with the uncertainties in them. We use a non-
linear least-squares minimization technique to extrapolate the
permittivity values at different frequencies and they are
decomposed into six components. The first component is
named as ‘D’ corresponding to the first term of equation (24),
whereas the other five components marked as ‘DLj’

corresponding to j=1, 2, 3, 4 and 5 in the summation of
equation (24). We have provided a code written using the
python programming language in the Supplementary Material
available online at stacks.iop.org/PS/95/095506/mmedia
that is used for carrying out this fitting. As can be seen
from table 3, our ωj/ÿ values for monolayer agree well with
those predicted in literature [77, 83–87]. We also note from
these tables that although the uncertainties are quite small for
the DL1, DL2, DL3 and DL4 components, they are quite
significant for the DL5 and D components. For the DL5
component, only a few data points are available for fitting
which lead to significant uncertainties in the fitting parameters
corresponding to this component. Also, the inferred ωp value
of 27.59 meV for monolayer of MoS2, given in table 7,
matches very well with the measured plasma frequency of
28.3 meV [88]. We use the fitting value of γd in equation (19)
to estimate the effective mass m* for various number of MoS2
layers. From these calculated m* values, we further evaluate
intrinsic carrier density N using the fitting values of ωP in
equation (18). From table 7, we also note that N is maximum

Table 6. Weight factor fj (dimensionless), damping coefficient γj(in
eV), and ωj resonance frequencies (in eV) for the Lorentz oscillators
used in equation (24) for layers 9 and 10. All the coefficients are
normalized with ÿ.

j Layer 10

fj/ÿ[×105] γj/ÿ[×10−1] ωj/ÿ

1 0.25±0.06 0.55±0.08 1.861±0.004
2 1.68±0.12 2.01±0.26 2.037±0.005
3 18.17±0.34 4.83±0.34 2.72±0.005
4 7.40±1.10 4.59±0.31 3.05±0.05
5 3.4±1.9 4.1±1.6 3.56±0.55

10

Phys. Scr. 95 (2020) 095506 S Dutt et al

http://stacks.iop.org/PS/95/095506/mmedia


for a monolayer of MoS2, thereafter, it starts decreasing up to
layer number 6 and starts increasing again as the number of
layers are increased up to 10.

Next, we find òr(ιω) values extracted by substituting òi(ω)
values in equation (4) for different layers of MoS2, which are
plotted against frequency in figure 5. The behaviour of òr(ω)
as a function of layer number is seen to be in accordance with

the observation by Yu et al [42]. In their work, the authors
demonstrate that excitonic effects play a dominant role in the
dielectric function of 5-7 layered MoS2. Therefore, the di-
electric function decreases with the layer number up to 6 but
turns to increase further with the increase in layer number.

Table 7. Values of the plasma frequency ωP, damping coefficient γd and the calculated intrinsic carrier density N for layer numbers 1 to 10.
Here m0 is the mass of an electron.

Layer ωP γd m* N
number (in meV) (in ×10−2 eV) (in m0) (in ×1015 cm−3)

1 27.59±0.02 3.10±0.93 0.57±0.30 1.20±0.63
2 26.68±0.02 3.18±0.81 0.56±0.25 1.13±0.52
3 25.59±0.01 3.20±0.78 0.55±0.24 1.08±0.48
4 25.16±0.02 3.26±0.82 0.54±0.25 1.04±0.49
5 25.06±0.03 3.31±0.86 0.54±0.26 1.02±0.49
6 24.81±0.02 3.42±0.77 0.52±0.23 0.98±0.43
7 25.31±0.04 3.39±1.05 0.52±0.31 1.01±0.60
8 25.63±0.02 3.33±0.81 0.53±0.24 1.04±0.48
9 25.96±0.02 3.28±0.94 0.54±0.29 1.07±0.56
10 26.34±0.04 3.20±0.77 0.55±0.24 1.11±0.49

Figure 5. Plots of real parts of the dielectric permittivity at imaginary
frequency as function of frequencies (in eV) for different number of
MoS2 layers.

Table 8. Calculated C3 coefficients (in a.u.) for interaction between
different layers of MoS2 with the alkali-metal atoms.

Layer Li Na K Rb Cs

1 0.879 0.960 1.455 1.613 1.932
2 0.810 0.883 1.340 1.484 1.776
3 0.784 0.853 1.296 1.434 1.716
4 0.766 0.833 1.266 1.401 1.677
5 0.752 0.817 1.243 1.374 1.645
6 0.752 0.818 1.243 1.375 1.645
7 0.839 0.917 1.388 1.540 1.845
8 0.853 0.933 1.413 1.567 1.878
9 0.860 0.940 1.424 1.580 1.893
10 0.866 0.948 1.435 1.592 1.908

Figure 6. Plots showing the C3 coefficients for Li, Na, K, Rb and Cs
atoms with varying layer numbers of MoS2.

Figure 7. The retardation coefficients ( f3(z)) for Li, Na, K, Rb and Cs
atom as functions of the atom-wall separation distance z.
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The C3 coefficients for the interactions between Li, Na,
K, Rb and Cs atoms and the MoS2 layers evaluated using
òr(ιω) values are listed in table 8. A comparison of the C3

coefficient as a function of layer number reveals that the
interaction is maximum between atoms and monolayer of
MoS2. The interaction decreases with an increase in the
number of MoS2 layers up to the sixth layer, then it starts
increasing again. The trend is found to be common for all the
considered atoms. It is also quite evident that the trend fol-
lowed by the C3 coefficients with increasing number of layers
is similar to that predicted for the intrinsic carrier density N.
This observation is explained using the fact that the strength
of the vdW force depends on the electric polarizability of the
interacting atom. The tendency of the MoS2 layer to polarize
the incoming atom increases with the increase in the number
of electrons per unit volume. As a result, the values of C3 see
an upsurge with an escalation in N.

A graphical representation for the C3 coefficients for the
considered alkali atoms with varying layer number is shown
in figure 6. Our results in this figure support the finding that
for the same layer number, the C3 coefficients increase with
increase in the atomic number. We also notice that the ratio of
C3 coefficients among various atoms vary slowly with the
number of layers. For instance, the ratio of the C3 coefficient
for the interaction of any layer of MoS2 with Rb and Li atoms
is 1.83 irrespective of the number of layers. This knowledge
of variation pattern of C3 coefficients with number of layers
with different alkali atoms will pave way to design sensors for
detecting the alkali atoms by the MoS2 layers. To give an
estimate of these interactions at an intermediate distance, we
next calculate the retardation function f3(z) as a function of
distance z for various number of layers in MoS2 based TMDs.
We have shown comparison of the f3(z) values between an
atom and the MoS2 monolayer in figure 7. It is clear from this
figure that the retardation function decreases with increase in
z. Also, we notice from the above figure that the retardation
function is similar for all the considered atoms, and it is not
affected much with the atomic size.

6. Conclusion

To summarize, we have investigated the C3 coefficients for
the interactions between the alkali atoms with the MoS2
layers. We performed high accuracy calculations of dynamic
dipole polarizability of the considered alkali atoms and
determined the dynamic dielectric permittivities for different
layers of MoS2 over a wide range of imaginary frequency. We
have proposed a readily usable logistic fit for the dielectric
permittivity for various layers of MoS2 ranging from 1 to 10.
We have also shown dependency of the intrinsic carrier
density N and the coefficients with increasing layer numbers
of the MoS2 surface. Variation of C3 as well as N with the
number of layers shows decrease in values up to 6 number of
layers. This finding could be useful for the formation of
highly sensitive and reproducible sensing probes for detection
of alkali atoms using 1-6 layered MoS2 based transition metal
dichalcogenides. Our study reveals that the ratios of the C3

coefficients among various atoms do not change as the layer
number is changed.
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