
RESEARCH ARTICLE
www.small-methods.com

High Accuracy Protein Identification: Fusion of Solid-State
Nanopore Sensing and Machine Learning

Shankar Dutt,* Hancheng Shao, Buddini Karawdeniya, Y. M. Nuwan D. Y. Bandara,
Elena Daskalaki, Hanna Suominen, and Patrick Kluth

Proteins are arguably one of the most important class of biomarkers for health
diagnostic purposes. Label-free solid-state nanopore sensing is a versatile
technique for sensing and analyzing biomolecules such as proteins at
single-molecule level. While molecular-level information on size, shape, and
charge of proteins can be assessed by nanopores, the identification of
proteins with comparable sizes remains a challenge. Here, solid-state
nanopore sensing is combined with machine learning to address this
challenge. The translocations of four similarly sized proteins is assessed using
amplifiers with bandwidths (BWs) of 100 kHz and 10 MHz, the highest
bandwidth reported for protein sensing, using nanopores fabricated in
<10 nm thick silicon nitride membranes. F-values of up to 65.9% and 83.2%
(without clustering of the protein signals) are achieved with 100 kHz and
10 MHz BW measurements, respectively, for identification of the four
proteins. The accuracy of protein identification is further enhanced by
classifying the signals into different clusters based on signal attributes, with
F-value and specificity of up to 88.7% and 96.4%, respectively, for
combinations of four proteins. The combined use of high bandwidth
instruments, advanced clustering and machine learning methods allows
label-free identification of proteins with high accuracy.

1. Introduction

Proteins are the vital building blocks of life, orchestrating a vast
array of biological functions and processes that maintain health
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and critical cellular functions. They can
serve as biomarkers for diagnosis and
monitoring of diseases, facilitate cellu-
lar signaling and reaction catalysis, and
enable transport and storage of critical
ions and molecules.[1–6] Proteins are con-
structed of amino acid chains folded into
specific tertiary and quaternary struc-
tures that govern their function. While
proteins are vital actors for biological pro-
cesses and functions essential for life,
their presence or fluctuations of their
typical levels can also indicate detri-
mental biological processes such as ad-
verse health conditions. In some circum-
stances, proteins contribute to the ad-
vancement of diseases by intensifying
their activity to create favorable settings
that enhance the progression of the dis-
ease, e.g. proteins such as PADI4 and
HIF-1 facilitate the growth of cancer.[7–9]

Irrespective of the function, selective pro-
tein detection and quantification is criti-
cal for the identification, evaluation and
understanding of biological processes
and related progress, e.g., for future drug
development.

Complex biological samples like serum, saliva, and urine
contain a multitude of protein biomarkers indicative of a
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host of health conditions. There are numerous conventional
analytical methods for protein detection, characterization,
and quantification such as mass spectrometry (MS),[10,11]

protein NMR spectroscopy,[12] enzyme-linked immunosor-
bent assay (ELISA),[13] protein immunoprecipitation,[14] X-ray
crystallography,[15] and fluorescence resonance energy transfer
(FRET).[16] While these have seen widespread adoption as tools
for protein profiling, inherent challenges include tedious sample
preparation and complex instrumentation (MS), protein labeling
(FRET), the need for specific receptors (ELISA), biologically ac-
tive crystalline states (X-ray), and lack of sufficient sensitivity for
some techniques. A label-free, portable technology with minimal
sample preparation, with the ability to operate in biomimetic
fluids for selective detection of low-abundance targets (i.e., for
early detection) in complex samples could be transformative
(i.e., many tests in one platform). While lateral-flow-assay-based
point-of-care devices tick most of these boxes, they are designed
for the visual detection of a specific target using specific re-
ceptors and may not be ideal for the early detection of a health
condition (i.e., low abundance assaying).

In this study, we used a solid-state nanopore (nanopore here-
after) sensor and machine learning (ML) for the selective identi-
fication of four similar-sized proteins. A nanopore sensor, in its
simplest definition, is a nanoscale aperture spanning an other-
wise impervious membrane separating two electrolyte reservoirs.
The analyte is added to one side (cis side) and a suitable voltage is
applied to the other side (trans side) to drive the molecules across
the nanopore generating analyte-specific information as resis-
tive or conductive pulses. Importantly, nanopore sensing can be
conducted under various electrolyte chemistries and the sam-
ple is typically added as-is. The versatility of this tag-free tech-
nology is well demonstrated by its application repertoire span-
ning a host of biological classes such as DNA,[17,18] proteins,[19,20]

glycans,[21,22] viruses,[23,24] and liposomes.[25] Unsurprisingly,
nanopores have also demonstrated great potential in studying the
fundamental protein structure as well as its biochemistry and bio-
physics; e.g., protein flexibility,[26] folding-unfolding,[27] molecu-
lar weight,[28] conformational differences,[29] and interaction be-
tween proteins[30] have been studied using nanopores. A key chal-
lenge in protein sensing is the fast translocation speed associated
with proteins. With the more ubiquitous Axopatch 200B ampli-
fier in the resistive-feedback mode, translocations with residence
times >10 μs are attenuated.[28] Thus, there is a constant inter-
est to perform nanopore sensing experiments using MHz-level
bandwidth (BW) equipment as they allow sub-microsecond reso-
lution readouts and, in this study, we report the detection of pro-
teins with bandwidths up to 10 MHz (sampling rate of 40 Msps).
The caveat with higher bandwidth is the increase in open-pore
current noise which can be circumvented partially by noise reduc-
tion (e.g., membranes fabricated employing low dielectric noise
materials such as quartz[31]) and signal magnitude enhancement
(e.g., thinner membranes) strategies. For nanopore-based pro-
tein sensing experiments, the highest bandwidth reported to date
is 1 MHz,[32] and for DNA bandwidths up to 10 MHz[31,33] has
been reported. The high bandwidth is instrumental for the dis-
tinction between similar sized proteins and the complexity of the
problem calls for using ML for a more advanced data analysis.

One of the main challenges of nanopore sensing has been
the selective identification of analytes in a complex mixture

by electrical readouts alone, i.e., uniquely associating the resis-
tive/conductive pulse of the nanopore sensor to a specific ana-
lyte. While modifying the nanopore surface with a selective re-
ceptor such as an antibody or an aptamer could incorporate the
much-needed selectivity, the shelf-life of the functional layers,
device-to-device variability, sensitivity/susceptibility to electrolyte
conditions, biofouling (in the case of complex-samples) and lim-
ited throughput could diminish the anticipated selectivity. The
lack of selectivity is exacerbated by the fact, despite being a sin-
gle molecule sensor, the individual current drop signals result-
ing from translocations have so far been mainly characterized by
two parameters: the pulse width (i.e., translocation time; Δt) and
pulse depth (ΔI). In certain instances, the area of the event, noise
levels and stepwise information of events have also been used
for analysis which are correlated to the pulse width and pulse
depth.[34,35] While these parameters can generate a fingerprint of
a molecule leading to positive identification, for molecules of very
similar weight, size, and charge in a complex mixture, accurate
identification with such simple metrics alone is hardly possible.
This type of conventional analysis leads to an enormous loss of
data since each signal is just characterized by two features (i.e.,
Δt and ΔI). Using an increasing number of features of the signal
or even the entire signal renders conventional statistical analysis
extremely difficult which is further exasperated by the number of
different signals that can result from one analyte.

Thus, supervised ML approaches have become attractive for
analyte identification. The use of such ML approaches has gained
tremendous traction in DNA sequencing,[36] and the determina-
tion of structural composition of polysaccharides.[37] Addition-
ally, identification of larger particles such as bacteria and viruses
are also emerging triggered by the current pandemic and other
global disease outbreaks. This is exemplified by the works of Tsut-
sui et al.[38] (bacteria) and, Taniguchi et al.[23] (viruses) where solid
state nanopores and ML methods have been combined to dis-
criminate between single-bacterial shapes and to identify coron-
aviruses, respectively. For proteins, Raynaud et al.[39] have used
seven features to distinguish a binary protein mixture, currently
the only existing ML-incorporated protein sensing study using
functionalized nanopores. Here we present a quaternary protein
system with data acquisition in the 10 MHz BW domain (com-
pared to the conventional 100 kHz) and>29000 events on average
(for different proteins measured at different applied bias) (˜76
× higher than previously mentioned study). Nanopore data un-
doubtably deliver sufficient information to differentiate proteins
(biomolecules in general), yet as evident by the literature, classi-
cal analysis techniques are not deciphering the additional layers
of information encoded in nanopore signals. In this study, we
explore ML coupled with solid-state nanopores for identification
and discrimination of proteins to elevate the potential of this al-
ready powerful single-molecule sensing tool for protein sensing.

2. Results

2.1. Fusion of Nanopore Sensing and Machine Learning

Figure 1(a) shows a schematic of protein translocation through
a ˜7 nm thick silicon nitride membrane. The translocation mea-
surements were done using two portable amplifiers developed
by Elements SRL (Figure 1 (b)) with BWs of 100 kHz (200 ksps)
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and 10 MHz (40 Msps). In this investigation, four proteins (Hb,
HSA, BSA, and Con A) were considered because of their similar
molecular weights and/or sizes (Table S1, Supporting Informa-
tion). Proteins with significantly different sizes and/or molecu-
lar weights will generate distinct electrical readouts and are thus
relatively easy to distinguish. The choice of proteins was there-
fore made to imitate a challenge that arises when trying to iden-
tify similar-sized proteins in complex real-world solutions, such
as blood serum. Hb, HSA, and BSA have comparable molecular
weights. The resemblance between HSA and BSA extends fur-
ther than just their molecular weights; they also share 76% se-
quence identity.[40] Furthermore, both HSA and BSA exhibit a
prolate shape, with nominal sizes at pH 8 of 7.1 and 7.2 nm, re-
spectively. Con A on the other hand, manifests as a spherical ho-
motetramer, with a molecular weight of 102 kDa. The size of Con
A, is ∼8 nm in diameter at pH 8, which is close to that of BSA
and HSA.[29] Representative current-time traces from transloca-
tion measurements at BW of 100 kHz and 10 MHz are shown in
Figure 1(d),(e) respectively.

Unlike the other three proteins, measurement of Hb under
higher applied voltages often leads to protracted/irreversible pore
occlusions that either require user intervention or solution ex-
change to recover the open-pore status. This made the collection
of a statistically significant data set without a change in pore char-
acteristics due to adsorption of proteins at 600 mV challenging.
After repeated attempts, we limited the applied voltage for the
Hb measurements to 500 mV unlike other proteins studied in
this work. Figure 1(f),(g) illustrate an example of unfiltered sig-
nals produced by measurements at 100 kHz and 10 MHz BW,
respectively followed by lowpass filtering with various cut-off fre-
quencies. As anticipated, lowering the cut-off frequency lowers
the measurement’s total noise, but at the expense of signal qual-
ity necessary for ML-based classification. The intricacies of the
signal structure are almost completely lost at 10 kHz cut-off fre-
quency emphasizing the need for higher bandwidth instrumen-
tation for nanopore sensing.[20,41,42] While this frequency has its
merits for conventional two-metric analysis based on Δt and ΔI,
the loss of intricate intra-signal details makes it inefficient for the
current study. For measurements performed at BW of 100 kHz
and 10 MHz, we thus chose cut-off frequencies of 35 kHz and
100 kHz, respectively, because these frequencies had the great-
est signal-to-noise ratios while still maintaining the fine features
of the signals.

Under an applied bias of 500 mV, the histograms for the drop
in ionic current as proteins translocates through the nanopore
(ΔΙ), dwell time (Δt), and scatter plots exhibiting ΔΙ as a function
of Δt are shown in Figure 2(a),(e) for all proteins. Other voltage-
specific histograms and scatter plots are provided in the Support-
ing Information (Figures S1, S2, S4, S5, Supporting Informa-

tion). The columnar pattern discernible in the scatter plots, in
particular evident in the measurements conducted at a 100 kHz
bandwidth, is due to the signal digitization process. As can be
observed in the scatter plots, the collected signal with different
bandwidths under otherwise similar conditions show distribu-
tion of dwell times noticeably different from each other. This is
expected considering that the Elements 10 MHz amplifier can
operate at a 100× higher bandwidth and 200× the sampling rate
compared to the Elements 100 kHz amplifier. For ease of compar-
ison, histograms corresponding to ΔΙ for the four proteins inves-
tigated with the 100 kHz instrument (200 ksps, BW = 100 kHz,
LPF = 35 kHz) and the 10 MHz instrument (40 Msps, BW =
10 MHz, LPF = 100 kHz) are shown in Figures 2(b–d),(f–h). We
observe significant overlap of the histograms because the protein
sizes or molecular weights are similar. A closer look reveals that
the histograms change with applied bias, and under certain con-
ditions, two distributions are visible, which highlights the depen-
dence of protein conformations on the applied voltage. Figures
S3 and S6 (Supporting Information) depict the overlapping his-
tograms corresponding to the change in dwell time for different
applied biases, further supporting the usage of ML for this chal-
lenge.

ML was performed to identify the proteins using the methods
described in the Methods section (Figure 3a). As expected, the
quality of the input(s) to the algorithm determines how well the
classifier performs. Five distinct feature extraction procedures
were created for each of the schemes (Figure 3b, Table 1) to ex-
tract the features in segmented and whole signals needed for ML.
The confusion matrices produced by the machine learning clas-
sification corresponding to the four proteins by measurements
taken at 100 kHz and 10 MHz BWs in response to 500 mV are
shown in Figure 3(c),(d). Figure 3(e),(f) demonstrate the corre-
sponding F-values for dual, tri and quaternary protein systems.
For this data, feature extraction scheme 3 (see Table 1) was ap-
plied. The fine features of signals are more apparent with the
10 MHz amplifier compared to its 100 kHz counterpart due to
significant bandwidth difference and the ability of the former to
sample data at 40 Msps while the latter is restricted to 200 ksps:
a 50 μs long event would be portrayed by 2000 points with the
10 MHz amplifier while with the latter it would be limited to 10
data points. These differences are well reflected in the F-values
where the result obtained with at 10 MHz bandwidth instrument
was 78.9 ± 0.2%, as opposed to 65.9 ± 0.3% with the 100 kHz
bandwidth instrument. A similar difference is observed in the
sensitivity values, where we obtain 79.4 ± 0.3% sensitivity from
measurements done at 10 MHz bandwidth as compared to 65.3±
0.3% from measurements done at 100 kHz BW. Additionally, as
expected, noticeable differences are also observed in the precision
values (78.8 ± 0.2% for 10 MHz BW measurements compared to

Figure 1. a) Sketch of protein translocation through a SiNx nanopore membrane. The proteins in a buffered electrolyte solution are placed in the cis
and trans channels depending on the charge and polarity of the applied voltage. Silver-silver chloride electrodes are used to apply a bias across the
membrane. b) Photographs of the portable amplifiers used for data acquisition: Elements 10 MHz and 100 kHz nanopore readers providing a sampling
rate of 40 Msps and 200 ksps, respectively. c) Different proteins used in the present study. Protein structures were obtained from the Protein Data Bank
website of the Research Collaboratory for Structural Bioinformatics. d,e) Representative ionic current-time traces of different proteins under bias dc
voltage ranging from 300 to 600 mV recorded at sampling rates of 200 ksps and 40 Msps, respectively. f,g) Event shape transformation showing the loss
of detail during low-pass filtering: comparison of the unfiltered signal and signals filtered at 35 kHz and 10 kHz frequencies (acquisition at 200 ksps)
(f) and 1 MHz, 500 kHz, 100 kHz, and 35 kHz frequencies (acquisition at 40 Msps) (g). The measurements of Hb, HSA, BSA, and Con A proteins were
conducted in electrolyte solutions with pH of 7.94, 7.92, 8.02, and 8.02 respectively.
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66.7± 0.3% for 100 kHz BW measurements) as well as specificity
values (93.1 ± 0.3% for 10 MHz BW measurements and 88.4 ±
0.3% for 100 kHz BW measurements). The impact of measure-
ments under different bias on the F-values is discussed below. For
measurements done at 500 mV, our results uncovered a notewor-
thy decrease in the true positive rate associated with HSA when
measuring at a bandwidth of 10 MHz as compared to 100 kHz.
This result can be attributed primarily to the substantial presence
of a secondary population that seems to overlap with populations
of the other proteins observed within the data obtained from the
10 MHz bandwidth (see figure 2(h)). Notably, this overlapping
secondary population, and consequently the influence it imparts,
is markedly reduced when conducting measurements at 100 kHz
BW. Though not explicitly evident, this disparity may potentially
be ascribed to secondary population not been detected due to fast
translocations at 100 kHz bandwidth.

2.2. Effect of Clustering on Protein Identification

As proteins are complex charged molecules (with both charged
and hydrophobic moieties), they often show physiochemical in-
teractions with the nanopore membranes.[13] These interactions
(both specific and non-specific) include, for example, adsorption
to the nanopore surface and protein-protein interactions. Such
interactions can be protein specific or can be inherent to the
nanopore system. While it is considerably challenging to pre-
cisely attribute each signal to its corresponding interaction, it is
feasible to correlate certain distinctive signal characteristics to
specific types of interaction. For example, in the event of a protein
interacting with the nanopore wall, the resulting signal is often
deep and prolonged compared to smooth translocations.[43] Influ-
encing factors such as nanopore dimensions, the nature of the
biomolecule involved, and the surface charge on the nanopore
walls, can cause these events to persist for a duration spanning
milliseconds to seconds. Conversely, when a protein undergoes
tumbling within the nanopore, it often gives rise to multi-level
events characterized by pronounced fluctuations in the intra-
event signal.[44,45] Furthermore, if the protein undergoes partial
unfolding, induced either by the electric field or physical confine-
ment, the resulting events are typically shallow and protracted.
We divided the signals into various individual clusters based
on the features of the signals which may be an indication of
smooth translocations and different interactions as discussed ear-
lier. These are shown in Figure 4(a),(b), which correspond to mea-
surements done at BW of 100 kHz and 10 MHz, respectively.
The clusters shown correspond to data measured under a bias of
500 mV. Clusters for the other applied biases are given in Figures
S7–S10 (Supporting Information). In addition to the cluster cen-
ters, the distinct signals are also displayed using thin lines with a
transparency of 80%. Cluster 0 with the highest population was
associated with smooth translocations of the proteins. Although
it is difficult to determine which interaction leads to a particu-
lar cluster based on this data, proteins moving closer to the pore

surface (more pore-surface interactions and by extension higher
confinement) should have longer dwell times compared to the
translocations along the principal axis (i.e., smooth transloca-
tions). For certain clusters, we also see a brief rising time followed
by a prolonged crest, which is another sign of a transient change
brought on by the physical confinement of the biomolecule or in-
duced by the electric field of the nanopore. We extracted features
from the signals associated with specific clusters using Scheme
3 and utilized those features to train and test the data in order
to investigate the impact of generated clusters on the identifica-
tion of proteins. Figure 4(c) shows the F-values for the case of
four proteins as a function of signals belonging to different clus-
ters. The blue and red hues represent the F-values from measure-
ments done at 100 kHz and 10 MHz, respectively. It is apparent
that cluster 0 has the lowest F-value that we believe to be from
smooth translocations. The signals belonging to cluster 1–3 are
believed to be the result of different protein-pore interactions and
have much higher F-values. In particular, clusters 1 and 2 show
F-values of 75.1 ± 0.4% and 73.2 ± 0.5%, respectively, for mea-
surements done at 200 ksps. For measurements carried out at
40 Msps, the F-values increased to 85.3 ± 0.3% (cluster 1) and
88.7 ± 0.3% (cluster 2), demonstrating that various proteins in-
teract with the nanopore system in very different ways and that
the signals produced by these interactions enable more precise
discrimination between these four proteins. The highest values
for sensitivity and specificity for are also observed with cluster-
ing the signals, i.e., 74.9 ± 0.4% and 91.6 ± 0.3%, respectively,
for measurements at 100 kHz BW corresponding to cluster 1 and
88.8 ± 0.3% and 96.4 ± 0.3%, respectively, for measurements at
10 MHz BW corresponding to cluster 2.

2.3. Effect of Feature Extraction Scheme on Protein Identification

As was previously mentioned, the accuracy of the ML prediction
depends on the quality of the data fed into the process. As a result,
we evaluated the accuracy for the identification of the quaternary-
protein system using various feature extraction techniques. The
F-values corresponding to the combination of four proteins are
displayed in Figure 4(d) as a function of the various schemes.
Scheme 3 provided the highest accuracy for measurements done
at both 100 kHz and 10 MHz. As compared to Scheme 1, we saw
a significant increase in the F-values obtained from Scheme 3
showing the importance of using a multi-feature approach and
the significance of features such as area under the curve, the
tailedness and the asymmetry of the signal. Scheme 4 was not
used with the data resulting from measurements done at 100 kHz
BW as at this sampling rate, the signal does not have enough data
points to enable the division into 50 parts. Despite being highly
computationally costly, Scheme 5, which uses the entire signal as
an input along with some characteristics about the signal shape,
did not show increased F-values as compared to Scheme 3 and
was thus not employed for the data obtained from measurements
carried out at 10 MHz BW.

Figure 2. Histograms corresponding to the drop in ionic current (ΔI) and dwell time (Δt) as well as the scatter plots representing Δt as a function of
ΔI for Hb, HSA, BSA, and Con A for measurements performed with nanopore readers of bandwidths a) 100 kHz and e) 10 MHz with a cross-membrane
bias of 500 mV. Overlap of the histograms corresponding to the change in relative conductance for measurements at 100 kHz BW when at a cross-
membrane bias of b) 300 mV, c) 400 mV, and d) 500 mV is applied. For measurements taken at 10 MHz BW, overlapping histograms are displayed in
(f-h). Overlapping histograms corresponding to the dwell time are shown in the insets of sub-figures (b–d) and (f–h).
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Figure 3. a) Workflow for the label-free identification of proteins combining solid-state nanopores and machine learning. b) Schematic displaying several
resistive pulse feature parameters used for machine learning. Confusion matrices obtained for measurements taken at bandwidth of c) 100 kHz and d)
10 MHz using scheme 3 (cf. table 1). The applied bias was 500 mV. The darker the color in the matrix, the higher is the number of pulses corresponding
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Table 1. Different feature extraction schemes and their corresponding features. The signal was divided into n parts of width Δt0/n and the average current
drop corresponding to each part (Δi1, Δi2, … Δin) was used as an input. Other features include current drop at full width at half maximum (ifwhm), the
peak drop in current (Δimax), width at full width at half maximum (Δtfwhm), area of the signal, skew and kurtosis. To account for the fluctuation in the
nanopore size in different experiments, the values of the current characteristics were transformed into conductance and normalized by the open pore
conductance.

Feature Extraction Scheme Features/Details

Scheme 1 Δi1, Δi2, … Δi10, Δt0/10

Scheme 2 Δi1, Δi2, … Δi10, Δt0/10, Δtfwhm, area, Δifwhm, Δimax

Scheme 3 Δi1, Δi2, … Δi10, Δt0/10, Δtfwhm, area, Δifwhm, Δimax, skew, kurtosis

Scheme 4 Δi1, Δi2, … Δi50, Δt0/50, Δtfwhm, area, Δifwhm, Δimax, skew, kurtosis

Scheme 5 Full signal, Δtfwhm, area, Δifwhm, Δimax, skew, kurtosis

2.4. Effect of Low Pass Filter (LPF) on Protein Identification

Figure 4(e) shows the impact of different cut-off frequencies of
the LPF on the F-values. A 10 kHz LPF is often used for filtering
raw data to increase the SNR with some studies using 5 kHz cut-
off frequencies.[18,46] However, as shown in Figure 1(f), at these
cut-off frequencies (i.e., 10 kHz), essential information in the sig-
nals is lost. The accuracy of the results produced by the classifier
is directly impacted by the loss of information as a result of choos-
ing low cut-off frequencies. On the other hand, noise in the sig-
nal can also reduce the accuracy if the signal is not adequately
filtered. The values shown in Figure 4(e) clearly demonstrate this
where an optimal cut-off frequency is needed to maximize the F-
values. Deducing the best LPF for a given BW involves striking
a balance between noise and signal distortion arising from filter-
ing the signal. While lower LPF settings would decrease noise, it
also contributes to signal distortion and thereby leading to loss
of characteristic signal features. On the other hand, increasing
the LPF cut-off frequency would lead to increase in noise while
preserving more of signal characteristics. Since lower noise and
preservation of signal characteristics lead to higher F-values, sub-
optimal LPF values can lead to lower F-values either due to sig-
nal distortion (low LPF) or high noise (high LPF). Thus, a fine
tug-of-war between these two parameters defines the best LPF
for a given BW (and sampling rate). We observe that the mea-
surements at 10 MHz and 100 kHz BW demonstrated optimal
outcomes when filtered at 100 kHz and 35 kHz respectively. For
measurements taken at 100 kHz and 10 MHz, the data was thus
filtered at 35 kHz and 100 kHz, respectively, and was used to pro-
duce all other results described in this study.

2.5. Effect of Applied Bias on Protein Identification

We also investigated how the applied voltage during the measure-
ments affected the accuracy of protein identification. The applied
voltage has been shown to influence the translocating conforma-
tion of proteins. Furthermore, the applied voltage and residence
time are inversely correlated with few exceptions such as in in-
stances where voltage-mediated protein unfolding is taking place.

To study the effect of voltage on the protein identification, we
computed the F-values resulting from measurements performed
under different applied biases (i.e., 300, 400, and 500 mV). For
both the measurements done at 100 kHz and 10 MHz BW, the
lowest F-values were obtained for experiments under 400 mV.
The highest F-values obtained for 100 kHz and 10 MHz data were
65.9 ± 0.3% (500 mV) and 83.2 ± 0.4% (300 mV), respectively.
While one would generally expect to see a higher F-value at lower
voltages due to slow translocation speeds, it is interesting to note
the lack of any linear correlation with the applied voltage and the
F-value in the two cases. Since proteins are sensitive to the voltage
bias used for translocation experiments unlike more rigid struc-
tures like DNA, this result further emphasizes the need to probe
the translocations over multiple voltages rather than choosing an
arbitrary voltage bias.

3. Conclusions

Machine learning is highly promising for the identification of
similar-sized proteins with high accuracy using single molecule
nanopore measurements. Since the measurement platform
makes use of solid state nanopores, there is a small tolerance for
variation in the diameters of the nanopores between membranes.
We were able to translate the trained data from one nanopore
and test it with a brand-new set of data from another nanopore
and obtained almost identical accuracies (within 3%) owing to the
standardization procedures (using the open pore conductance to
normalize the conductance drop) utilized in the current work.
The portable 10 MHz bandwidth amplifier yields detailed sig-
nals that improve protein identification significantly compared
to commonly used 100 kHz amplifiers. We demonstrated that
the protein identification accuracy varies with the applied trans-
membrane bias which could be associated to the presence of dif-
ferent protein conformations at different voltages. With F-values
as high as 99.3%, we observed extraordinarily strong discrimina-
tion between proteins of comparable sizes in two protein com-
binations. With the help of clustering and high bandwidth mea-
surements, F-values and specificity values as high as 88.7% and
96.4% respectively are obtained for combinations of four pro-

to that combination. F-values for combinations of two, three, and four different proteins employing measurements at bandwidths of e) 100 kHz and f)
10 MHz. Orange represents combinations of two, green represents combinations of three, and purple shows combination of all four proteins. Under
the same circumstances, measurements made at 40 Msps (BW = 10 MHz) result in a greater overall accuracy of identification of a single protein among
four similarly sized proteins.
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 23669608, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

td.202300676 by A
ustralian N

ational U
niversity, W

iley O
nline L

ibrary on [23/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



www.advancedsciencenews.com www.small-methods.com

Figure 4. Splitting the signals into different clusters to differentiate betweenpossible events resulting from different conformations and interactions as a
protein molecule translocates through a nanopore for measurements performed at bandwidth of a) 100 kHz and b) 10 MHz. The clusters shown are for
measurements with a trans-membrane bias of 500 mV. Due to surface charges on the nanopore wall and the proteins, specific and non-specific binding
and electrostatic interactions can lead to such different signals c) F-values (for the case of combination of all four proteins) as a function of events
corresponding to different clusters used for training the classification model. 500 mV was applied, and feature extraction was performed using scheme
3. F-values (for the case of combination of all four proteins, applied voltage = 500 mV) as a function of d) extraction scheme and e) the cutoff frequency
of the low pass filter used to filter the raw data. f) F-values as a function of applied voltage during the measurements. The F-values depicted in (c–f) are
color coded, i.e., blue for the measurements done using nanopore reader with bandwidth of 100 kHz and red for measurements done using nanopore
reader with bandwidth 10 MHz. The standard deviation of the calculated F-values is <0.009.

teins. The fusion of solid state nanopore sensing and ML is
thus very promising for the identification of proteins in com-
plex samples. Selectivity has been a major challenge in label free
nanopore sensing and this is an important step towards address-
ing this challenge. For our study, widely used thin SiNx mem-
branes were employed. Methodologies to slowdown the translo-
cation of the proteins through solid state nanopores and reduce
dielectric noise can yield further improvements in data quality
that can further increase accuracy. Our methodology offers the
possibility to study variations in post-translational modifications
of proteins, and protein-protein interactions that may also pro-
vide important insights into the underlying processes of diseases.
Further enhancements, such as choice of electrolyte, electrolyte
concentration, and employing asymmetric electrolyte concentra-
tion in the cis and trans chambers, may further increase the ca-
pacity to generate more accurate identifications of the proteins.

4. Experimental Section
Nanopore Fabrication: Free standing, ∼7 nm thick silicon nitride mem-

branes with a 100 nm thick silicon dioxide underlayer of size 40 μm x 40 μm
on a 300 μm thick silicon frame were fabricated as discussed previously.[47]

The membranes were placed between two custom built PMMA half cells,
with reservoirs containing a 1 M KCl electrolyte solution buffered to a

pH of 7. A Keithely 2450 sourcemeter was used to apply an electric field
<1 V nm−1 across the membrane, which was stopped as soon as a rapid
surge in current was observed, indicating the creation of a nanopore.[48,49]

To estimate the size of fabricated nanopore, a current-voltage (I–V) curve
was obtained using the eNPR-200 amplifier: the slope of the curve (i.e.,
open-pore conductance, G) was then used to estimate the diameter of the
pore using,

G0 = K

⎛
⎜
⎜
⎜
⎝

1
𝜋r2

0
L0

+ 𝜇|𝜎|
K

2𝜋r0
L0

+ 2

𝛼2r0 + 𝛽
𝜇|𝜎|

K

⎞
⎟
⎟
⎟
⎠

−1

(1)

Where L and r0 were membrane thickness and pore radius, respectively.
The diameters of the nanopores used in this investigation ranged from
≈15 to 17 nm (cf. Table S2, Supporting Information).

Analytes and Data Acquisition: Information about the proteins (Bovine
Hemoglobin (Hb), Human Serum Albumin (HSA), Bovine Serum Albu-
min (BSA), and Concanavalin A (Con A)) used in this study was given in
Table S1 (Supporting Information). Figure 1(c) shows the structure of the
proteins obtained from the Protein Data Bank website of the Research Col-
laboratory for Structural Bioinformatics. 1 M KCl (Sigma Aldrich, P9333)
electrolyte buffered with 10 mM tris-EDTA was used for all translocation
experiments. The target protein was added to the cis side to a final con-
centration of ˜23 nM. Using concentrated drops of HCl (Ajax-Finechem,
AJA1367, 36%) or KOH (Chem Supply, PA161), the pH of the electrolyte
was adjusted to the desired level and measured using an Orion StarTM pH
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meter. Figure 1(a) shows the schematic of protein translocation through
a nanopore in response to a voltage bias applied to the trans side. Two
different portable amplifiers were used (Figure 1(c)): Elements nanopore
readers with maximum bandwidths of a) 100 kHz and b) 10 MHz providing
sampling rates of 200 ksps and 40 Msps respectively (these would here-
after be referred to as 100 kHz and 10 MHz amplifiers, respectively). While
the 100 kHz amplifier produces data at bandwidths similar to conventional
amplifiers such as Axopatch 200B used for the majority of nanopore exper-
iments, the 10 MHz amplifier offers the highest-bandwidth measurements
with a temporal resolution of 25 nanoseconds, generating data at a max-
imum rate of ≈8.8 GB min−1.[31] As prolate shaped proteins were known
to have preferred orientations at different electric fields,[29] the measure-
ments were performed at voltages ranging from 300 to 600 mV for mea-
surements done at 100 kHz BW and from 300 mV to 500 mV for mea-
surements done at 10 MHz BW. Measurements were not taken at 600 mV
using 10 MHz BW amplifier as ionic current corresponding to an applied
bias of 600 mV measurements were very close to the current measurement
limit (± 100 nA) of the Nanopore Reader 10 MHz.

Lowpass Filtration and Signal Extraction: The acquired data was filtered
using a 35 kHz and 100 kHz Butterworth filter for measurements done at
100 kHz BW (200 ksps) and 10 MHz BW (40 Msps), respectively. It was dis-
covered that these cut-off frequencies offered the best signal-to-noise ratio
without sacrificing details in the signal (see Results and Discussion sec-
tion). The event extraction was performed using a custom python-based
code using vectorized operations from numpy and bottleneck libraries (see
GitHub repository for the code). An adaptive threshold at or above 5 × Istd
where Istd is the standard deviation of the baseline in the analysis win-
dow, was used to flag the pulses to be extracted and stored (i.e., events or
signals).

Clustering and Feature Extraction: The classification of the extracted
signals into different clusters (based on a similarity threshold of >85%
determined by Pearson correlation) was carried out using a K-means
algorithm.[50] Each signal was first assigned to a cluster at random by the
K-means algorithm, which then repeatedly improved the clusters by shift-
ing the signals to the cluster whose cluster center was the most similar
to the signal. The cluster center shifts with each assignment, and the pro-
cedure was continued until either the cluster assignments cease shifting
or a certain number of iterations had been reached. After different itera-
tions in number of clusters, four clusters were found to be the optimal
number necessary for each cluster center to offer details about various
biomolecule translocation conformations through the nanopore without
being too similar to other clusters (cf. Figure 4(a,b)).

To employ both clustered and non-clustered signals for supervised
learning, signal characteristics other than conventionally used ΔI and Δt
need to be extracted. These features were passed on to the classifier as in-
put. As the shape, size, and surface charge of biomolecules vary not only
from one species to another but also within the same species, the extrac-
tion of distinguishing features has a significant impact on the accuracy of
the results. Figure 3(b) shows a schematic of several resistive pulse fea-
ture parameters. In brevity, the resistive pulse was divided into “n” equally
spaced segments along its width where the current drop at the median of
each segment (Δi1, Δi2, … Δin), the pulse width at full width half maxi-
mum (tfwhm), the pulse width of each segment (t0 /n), the drop in current
at full width half maximum (ifwhm), the maximum current drop (imax), the
area under the curve, the kurtosis (measure of asymmetry of the signal),
and the skewness (measure of the tailedness of the signal), were used as
key features for machine learning. All or some of these features were used
for machine learning and the collection of the features used for the ma-
chine learning was referred to as a scheme (see Table 1 for more details)
Five different schemes were used as shown in Table 1 and compared the
results obtained from each (discussed in the Results Section).

Machine Learning: Supervised ML was implemented using random
forest[51] and rotation forest[52] classifiers, supported by the large number
of input signals (see Table S3, Supporting Information). These classifiers
adopt bagging or bootstrap sampling and scale well with high numbers of
uncorrelated trees. Additionally, prior ML investigations involving the de-
tection of viruses using solid-state nanopores have produced promising
results using similar approaches.[23,24,53] For the identification of the pro-

teins considered in this investigation, it was found that the random forest
classifier performed slightly better than rotation forest (with F-values up
to 6% higher with the random forest classifier). Thus, results correspond-
ing to the random forest implementations were shown and discussed in
this work hereafter. The classifier categorizes the results into four types:
true positive, true negative, false positive and false negative and the ratio
of these values (see Figure S11, Supporting Information) gives the preci-
sion, recall/sensitivity, specificity, and F-value (also known as F1-values).
In context of this research, “precision” was defined as the ratio of accu-
rately predicted positive protein identifications to the aggregate of pre-
dicted positive protein identifications. The significance of “precision” lies
in its role as an indicator of false detection rates, with higher precision val-
ues signifying fewer false positives. Sensitivity, alternatively known as the
true positive rate, was a measure of the model’s ability to correctly identify
proteins. A high sensitivity score indicates that the model excels at detect-
ing all proteins that exist within the solution. On the other hand, specificity
was expressed as the ratio of accurately predicted negative protein iden-
tifications to the total number of actual negative protein identifications.
A model demonstrating high specificity was adept at distinguishing pro-
teins that do not exist in the solution. Within the context of this study,
“positive protein identifications” were those that the model was specifi-
cally designed to recognize, while “negative protein identifications” refer
to proteins which the model was constructed to identify as non-target pro-
teins.

For training the algorithm, the data features from different proteins
were binarized. The testing sets included a random combination of
the data from different experiments of translocation of various proteins
through different nanopores. Under-sampling was utilized to balance out
the unequal datasets since the number of retrieved signals varies between
measurements. This was done by maintaining all data in the minority class
and reducing the size of the majority class. Random or sequential selection
can be used to choose the signals from the majority class (both options
were possible through the provided code). The ML models and their eval-
uations were implemented in Scikit-learn.[54] An m-fold cross validation
method (m = 10) was employed to compute values of the aforementioned
evaluation measures. As a result, each domain’s data was first divided into
training data and test data. The training data was then divided into 10 sep-
arate subsets at random. Each subset was used as a validation set once
while the other nine subsets were used as training set. Grid Search was im-
plemented to find the best combination of hyperparameters. Classes were
balanced during evaluation. The best model from the 10 training attempts
was used as final model which was then evaluated on the initial test data.
The final F-scores shown in the study were obtained as averages over all
regressions and standard deviations from results of different regressions
were also reported. For implementing ML on data resulting from different
clusters, the raw signals originating from each protein (before the cluster-
ing procedure) were randomly divided into two parts with 80:20 split corre-
sponding to raw training data (80%) and test data (20%). At this point, the
data was split into various sets in order to remove any bias brought on by
clustering and to prevent false high accuracy scores. Clustering was then
carried out individually for each protein and each split. Then, depending
on whether smooth translocations, interactions, or a combination of both
should be the focus of the machine learning, signals from a certain cluster
were chosen, and characteristics were then extracted from those signals.
Following the under-sampling procedure, the data from several measure-
ments were pooled. The test set was also treated in a similar fashion and
the ML process was implemented as discussed earlier.
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